Chris Piech CS109

Expectation

As we left off, we had shown that $E[\sum_i X_i] = \sum_i E[X_i]$. We are going to use that to show how to calculate variances.

Expectation of Binomial

First let's start with some practice with the sum of expectations of indicator variables. Let $Y \sim Bin(n, p)$, in other words if Y is a Binomial random variable. We can express Y as the sum of n Bernoulli random indicator variables $X_i \sim Ber(p)$. Since X_i is a Bernoulli, $E[X_i] = p$

$$Y = X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i$$

Let's formally calculate the expectation of *Y*:

$$E[Y] = E[\sum_{i}^{n} X_{i}]$$

= $\sum_{i}^{n} E[X_{i}]$
= $E[X_{0}] + E[X_{1}] + \dots E[X_{n}]$
= np

Expectation of Negative Binomial

Recall that a Negative Binomial is a random variable that semantically represents the number of trials until *r* successes. Let $Y \sim NegBin(r, p)$.

Let $X_i = \#$ trials to get success after (i-1)st success. We can then think of each X_i as a Geometric RV: $X_i \sim Geo(p)$. Thus, $E[X_i] = \frac{1}{p}$. We can express *Y* as:

$$Y = X_1 + X_2 + \dots + X_r = \sum_{i=1}^r X_i$$

Let's formally calculate the expectation of *Y*:

$$E[Y] = E[\sum_{i=1}^{r} X_i]$$

=
$$\sum_{i=1}^{r} E[X_i]$$

=
$$E[X_1] + E[X_2] + \dots E[X_r]$$

=
$$\frac{r}{p}$$

Variance

Recall that I_i is an indicator variable for event A_i when:

$$I_i = \begin{cases} 1 & \text{if } A_i \text{ occurs} \\ 0 & \text{otherwise } n \equiv 1 \end{cases}$$

Let *X* be the # of events that occur: $X = \sum_{i=1}^{n} I_i$

$$E[X] = E[\sum_{i=1}^{n} I_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} P(A_i)$$

Now consider a pair of events A_iA_j occurring. $I_iI_j = 1$ if both events A_i and A_j occur, 0 otherwise. The number of pairs of events that occur is $\binom{X}{2} = \sum_{i < j} I_i I_j$. We can write expressions for the expectation of both sides of this equation:

$$E\left[\binom{X}{2}\right] = E\left[\frac{X(X-1)}{2}\right] = \frac{1}{2}(E[X^2] - E[X])$$
$$E\left[\sum_{i < j} I_i I_j\right] = \sum_{i < j} E[I_i I_j] = \sum_{i < j} P(A_i A_j)$$

By transitivity of equality it must hold that:

$$\frac{1}{2}(E[X^2] - E[X]) = \sum_{i < j} P(A_i A_j)$$
$$E[X^2] - E[X] = 2\sum_{i < j} P(A_i A_j)$$
$$E[X^2] = 2\sum_{i < j} P(A_i A_j) + E[X]$$

This gives us a way to calculate the second moment for sets of events! Now we can plug it into the definition of variance:

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

= $2\sum_{i < j} P(A_{i}A_{j}) + E[X] - (E[X])^{2}$

Variance of Binomial Proof

A Binomial is the sum of *n* Bernoulli random variables: $X_i \sim Ber(p)$. Since each Bernoulli variable is an indicator we know that $E[X_i] = p$ and we can use our new way of calculating variance from events to find the variance of our Binomial.

First we must calculate $\sum_{i < j} P(A_i A_j)$

$$\sum_{i < j} P(A_i A_j) = \sum_{i < j} p^2 \qquad \text{since the events are independent in a Binomial} \\ = \binom{n}{2} p^2 \qquad \text{since the inner term of the sum is independent of i and j} = \frac{n(n-1)}{2} p^2$$

Which we can plug into our new expression for variance.

$$Var(X) = 2\frac{n(n-1)}{2}p^{2} + np - (np)^{2}$$

= $n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$
= $np - np^{2}$
= $np(1-p)$