Variance from Events

Expectation

As we left off, we had shown that $E\left[\sum_{i} X_{i}\right]=\sum_{i} E\left[X_{i}\right]$. We are going to use that to show how to calculate variances.

Expectation of Binomial

First let's start with some practice with the sum of expectations of indicator variables. Let $Y \sim \operatorname{Bin}(n, p)$, in other words if Y is a Binomial random variable. We can express Y as the sum of n Bernoulli random indicator variables $X_{i} \sim \operatorname{Ber}(p)$. Since X_{i} is a Bernoulli, $E\left[X_{i}\right]=p$

$$
Y=X_{1}+X_{2}+\cdots+X_{n}=\sum_{i=1}^{n} X_{i}
$$

Let's formally calculate the expectation of Y :

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i}^{n} X_{i}\right] \\
& =\sum_{i}^{n} E\left[X_{i}\right] \\
& =E\left[X_{0}\right]+E\left[X_{1}\right]+\ldots E\left[X_{n}\right] \\
& =n p
\end{aligned}
$$

Expectation of Negative Binomial

Recall that a Negative Binomial is a random variable that semantically represents the number of trials until r successes. Let $Y \sim N e g \operatorname{Bin}(r, p)$.

Let $X_{i}=\#$ trials to get success after $(i-1)$ st success. We can then think of each X_{i} as a Geometric RV: $X_{i} \sim \operatorname{Geo}(p)$. Thus, $E\left[X_{i}\right]=\frac{1}{p}$. We can express Y as:

$$
Y=X_{1}+X_{2}+\cdots+X_{r}=\sum_{i=1}^{r} X_{i}
$$

Let's formally calculate the expectation of Y :

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i=1}^{r} X_{i}\right] \\
& =\sum_{i=1}^{r} E\left[X_{i}\right] \\
& =E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots E\left[X_{r}\right] \\
& =\frac{r}{p}
\end{aligned}
$$

Variance

Recall that I_{i} is an indicator variable for event A_{i} when:

$$
I_{i}= \begin{cases}1 & \text { if } A_{i} \text { occurs } \\ 0 & \text { otherwise } n \equiv 1\end{cases}
$$

Let X be the \# of events that occur: $X=\sum_{i=1}^{n} I_{i}$

$$
E[X]=E\left[\sum_{i=1}^{n} I_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

Now consider a pair of events $A_{i} A_{j}$ occurring. $I_{i} I_{j}=1$ if both events A_{i} and A_{j} occur, 0 otherwise. The number of pairs of events that occur is $\binom{X}{2}=\sum_{i<j} I_{i} I_{j}$. We can write expressions for the expectation of both sides of this equation:

$$
\begin{aligned}
& E\left[\binom{X}{2}\right]=E\left[\frac{X(X-1)}{2}\right]=\frac{1}{2}\left(E\left[X^{2}\right]-E[X]\right) \\
& E\left[\sum_{i<j} I_{i} I_{j}\right]=\sum_{i<j} E\left[I_{i} I_{j}\right]=\sum_{i<j} P\left(A_{i} A_{j}\right)
\end{aligned}
$$

By transitivity of equality it must hold that:

$$
\begin{array}{ll}
\frac{1}{2}\left(E\left[X^{2}\right]-E[X]\right)=\sum_{i<j} P\left(A_{i} A_{j}\right) & \\
E\left[X^{2}\right]-E[X]=2 \sum_{i<j} P\left(A_{i} A_{j}\right) & E\left[X^{2}\right]=2 \sum_{i<j} P\left(A_{i} A_{j}\right)+E[X]
\end{array}
$$

This gives us a way to calculate the second moment for sets of events! Now we can plug it into the definition of variance:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& =2 \sum_{i<j} P\left(A_{i} A_{j}\right)+E[X]-(E[X])^{2}
\end{aligned}
$$

Variance of Binomial Proof

A Binomial is the sum of n Bernoulli random variables: $X_{i} \sim \operatorname{Ber}(p)$. Since each Bernoulli variable is an indicator we know that $E\left[X_{i}\right]=p$ and we can use our new way of calculating variance from events to find the variance of our Binomial.

First we must calculate $\sum_{i<j} P\left(A_{i} A_{j}\right)$

$$
\begin{aligned}
\sum_{i<j} P\left(A_{i} A_{j}\right) & =\sum_{i<j} p^{2} \quad \text { since the events are independent in a Binomial } \\
& =\binom{n}{2} p^{2} \quad \text { since the inner term of the sum is independent of } \mathrm{i} \text { and } \mathrm{j} \quad=\frac{n(n-1)}{2} p^{2}
\end{aligned}
$$

Which we can plug into our new expression for variance.

$$
\begin{aligned}
\operatorname{Var}(X) & =2 \frac{n(n-1)}{2} p^{2}+n p-(n p)^{2} \\
& =n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2} \\
& =n p-n p^{2} \\
& =n p(1-p)
\end{aligned}
$$

